Extensions 1→N→G→Q→1 with N=C22×C4 and Q=C3×S3

Direct product G=N×Q with N=C22×C4 and Q=C3×S3
dρLabelID
S3×C22×C1296S3xC2^2xC12288,989

Semidirect products G=N:Q with N=C22×C4 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
(C22×C4)⋊1(C3×S3) = C12×S4φ: C3×S3/C3S3 ⊆ Aut C22×C4363(C2^2xC4):1(C3xS3)288,897
(C22×C4)⋊2(C3×S3) = C3×C4⋊S4φ: C3×S3/C3S3 ⊆ Aut C22×C4366(C2^2xC4):2(C3xS3)288,898
(C22×C4)⋊3(C3×S3) = A4×D12φ: C3×S3/C3C6 ⊆ Aut C22×C4366+(C2^2xC4):3(C3xS3)288,920
(C22×C4)⋊4(C3×S3) = C4×S3×A4φ: C3×S3/S3C3 ⊆ Aut C22×C4366(C2^2xC4):4(C3xS3)288,919
(C22×C4)⋊5(C3×S3) = C6×D6⋊C4φ: C3×S3/C32C2 ⊆ Aut C22×C496(C2^2xC4):5(C3xS3)288,698
(C22×C4)⋊6(C3×S3) = C12×C3⋊D4φ: C3×S3/C32C2 ⊆ Aut C22×C448(C2^2xC4):6(C3xS3)288,699
(C22×C4)⋊7(C3×S3) = C3×C23.28D6φ: C3×S3/C32C2 ⊆ Aut C22×C448(C2^2xC4):7(C3xS3)288,700
(C22×C4)⋊8(C3×S3) = C3×C127D4φ: C3×S3/C32C2 ⊆ Aut C22×C448(C2^2xC4):8(C3xS3)288,701
(C22×C4)⋊9(C3×S3) = C2×C6×D12φ: C3×S3/C32C2 ⊆ Aut C22×C496(C2^2xC4):9(C3xS3)288,990
(C22×C4)⋊10(C3×S3) = C6×C4○D12φ: C3×S3/C32C2 ⊆ Aut C22×C448(C2^2xC4):10(C3xS3)288,991

Non-split extensions G=N.Q with N=C22×C4 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
(C22×C4).1(C3×S3) = C3×A4⋊C8φ: C3×S3/C3S3 ⊆ Aut C22×C4723(C2^2xC4).1(C3xS3)288,398
(C22×C4).2(C3×S3) = C3×A4⋊Q8φ: C3×S3/C3S3 ⊆ Aut C22×C4726(C2^2xC4).2(C3xS3)288,896
(C22×C4).3(C3×S3) = A4×Dic6φ: C3×S3/C3C6 ⊆ Aut C22×C4726-(C2^2xC4).3(C3xS3)288,918
(C22×C4).4(C3×S3) = A4×C3⋊C8φ: C3×S3/S3C3 ⊆ Aut C22×C4726(C2^2xC4).4(C3xS3)288,408
(C22×C4).5(C3×S3) = C3×C12.55D4φ: C3×S3/C32C2 ⊆ Aut C22×C448(C2^2xC4).5(C3xS3)288,264
(C22×C4).6(C3×S3) = C3×C6.C42φ: C3×S3/C32C2 ⊆ Aut C22×C496(C2^2xC4).6(C3xS3)288,265
(C22×C4).7(C3×S3) = C6×Dic3⋊C4φ: C3×S3/C32C2 ⊆ Aut C22×C496(C2^2xC4).7(C3xS3)288,694
(C22×C4).8(C3×S3) = C6×C4.Dic3φ: C3×S3/C32C2 ⊆ Aut C22×C448(C2^2xC4).8(C3xS3)288,692
(C22×C4).9(C3×S3) = C3×C12.48D4φ: C3×S3/C32C2 ⊆ Aut C22×C448(C2^2xC4).9(C3xS3)288,695
(C22×C4).10(C3×S3) = C6×C4⋊Dic3φ: C3×S3/C32C2 ⊆ Aut C22×C496(C2^2xC4).10(C3xS3)288,696
(C22×C4).11(C3×S3) = C3×C23.26D6φ: C3×S3/C32C2 ⊆ Aut C22×C448(C2^2xC4).11(C3xS3)288,697
(C22×C4).12(C3×S3) = C2×C6×Dic6φ: C3×S3/C32C2 ⊆ Aut C22×C496(C2^2xC4).12(C3xS3)288,988
(C22×C4).13(C3×S3) = C2×C6×C3⋊C8central extension (φ=1)96(C2^2xC4).13(C3xS3)288,691
(C22×C4).14(C3×S3) = Dic3×C2×C12central extension (φ=1)96(C2^2xC4).14(C3xS3)288,693

׿
×
𝔽